「디지털 새싹 캠프」 교육 개요서

2023년 7월 ~ 2023년 8월 「디지털 새싹」캠프 운영 사업

디지털 새싹 캠프 프로그램(안)_230616

한양대학교 ERICA ㈜도로 ㈜고영로보틱스 안산시청소년재단

[2023년 7~8월 구성 프로그램]

주제	컴퓨팅	사고력	인공지능	과 데이터	융합형	문제해결
교육목표	다양한 교구재*를 활용 한 체험과 프로그래밍 으로 컴퓨팅 사고력 함 양 및 SW-AI 친근감 향 상		인공지능 개념과 이해 를 바탕으로, 데이터 문해력을 높이고, 인공 지능(정보) 윤리 의식 제고		일반 교과에 AI를 적용 하거나, 일상생활 문제 를 인공지능으로 해결 하는 역량 신장	
(기초) 단계별 활동 사례	(기초) 지능형 로봇의 AI 틱택토 (파이썬, GPT)	12차시 (4주과정)	(기초) 도로 위 자율주 행차와 AI, 로봇윤리 (아두이노, 모랄머신)	8차시 (2일 과정)	(기초) 인공지능 로봇 서비스 만들기	12차시 (4주과정)
(심화) 단계별 활동 사 례	(심화 A유형) 파이썬 X 로봇 프로젝 트	8차시 (2일 과정)	(심화) 책상위의 비서 딥러닝 로봇팔 (티처블머신, 아두이 노)	12차시 (4주 과정)	(심화) SDGs 문제해결 AI로봇프로젝트	12차시 (4주 과정)

디지털 새싹 캠프 운영 사업

2023년 여름 캠프 프로그램 교안

□ (주제①) 컴퓨팅 사고력 프로그램 교안

(수준) 과정명	(기초) 지능형	(기초) 지능형 로봇의 AI 틱택토		지속 과정 / 총 12차시 (4회) (이론 2차시, 실습 10차시) ※ 3시간 × 4회(일)	
수강 가능 교육생 수준		입력이 가능한 청소년 고학년 이상)	수업방법	IC-PBL(과제, 문제해결)	
교육과정 연계 과목		나는 인공지능 수업 과, 정보)	교육장소	방문형 및 집합형 모두 수행	
온라인 과정 여부		х	적정 클래스 인원	약 20명	
학습자료	<u> </u>	.트북(혹은 컴퓨터), 수입	법 교안, 아두이노	게임기 키트(Kit)	
학습 단원명	지속 가능한 기술과 융합			프로그래밍 과정을 체험한다. 소스를 활용한 프로그래밍을	
48 020	인공지능(Ai)	3. 인공지능의 개념과 특성을 설명하고 인공지능 소프트웨어를 구별한다. 4. 게임에서 승리하기 위한 AI 알고리즘을 활용한다.			
학습 목표 (학습 역량)	① 파이썬 프로그래밍 도구를 활용하여 기초적인 도형 그리기, 자동화 과정을 만들 수 있다 파이썬 설치하기 - 파이썬 기초 문법 이해하기 (조건문, 반복문, 변수, 함수 등)				
(46 48)	② GPT와 아두이노를 연계하여 원하는 게임을 만들 수 있다 GPT를 이용한 새로운 게임 제작 및 딥러닝 학습 모델 게임에 포함하기 - 아두이노를 이용해 제작한 게임을 물리적으로 구현하기				
교육과정 연계	[6실04-09]프로그래밍 도구를 사용하여 파이썬을 직접 다루어 보며 문법을 이해 기초적인 프로그래밍 과정을 체험한다. 한다. [9정04-01] 인공지능의 개념과 특성을 설명 GPT를 활용하여 파이썬 환경에서 다양한 하고 인공지능 소프트웨어를 구별한다. 게임을 개발한다.				
정보기기 활용 실습 및 체험 활동 요소	- 노트북(혹은 컴퓨터)을 활용하여 코딩 실습 수행 - 직접 원하는 게임을 제작하고 설정을 자유롭게 활용 - 아두이노 게임기를 제작함으로써 노트북 없이도 게임 활동 구현				
자기주도 학습활동	- GPT를 이용한 게임 제작하기 - 파이썬 환경을 이용해 게임 수정하기(난이도, 이미지, 추가 규칙 등) - 아두이노를 이용해 직접 게임기로 만들기				
동기유발 전략 및 흥미		해결과 경쟁 요소를 추 을 제작하고 수정하며		확보	

	차시	주요 활동(수업) 내용
	1~3	- 파이썬 설치 - 파이썬 기초 문법 학습
커리큘럼 주요 활동	4~6	- 파이 게임을 이용한 게임 제작 - 파이썬 문법을 이용한 게임 수정
, _ 5	7~9	- Chat GPT를 이용한 틱택토 게임 제작 - Minimax AI 알고리즘을 이용한 틱택토 필승 AI 게임 제작
	10~12	- 파이썬과 GPT를 활용한 본인만의 러닝 게임 만들기 - 아두이노를 이용한 러닝 게임 제작

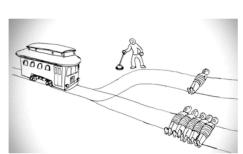
교육 이미지

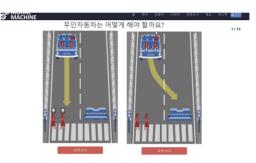


GPT를 이용한 틱택토 구현

Google Minimax 틱택토

아두이노 게임기 제작(러닝 게임 구현)



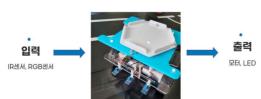

□ (주제②) 인공지능과 데이터 프로그램 교안

(수준) 과정명	(기초) 도로 위 자율주행차와 AI, 로봇 윤리		교육유형/시간	단기과정 / 총 8차시 (2회) (이론 2차시, 실습 6차시) ※ 4시간 × 2회(일)
수강 가능 교육생 수준	코딩 경험을 보유	한 청소년 (중고등학생)	수업방법	IC-PBL(과제, 문제해결)
교육과정 연계 과목		나는 인공지능 수업 보, 윤리)	교육장소	방문형 및 집합형 모두 수행
온라인 과정 여부		х	적정 클래스 인원	약 20명
학습자료		자율주행 자동차	키트, 노트북, 수위	업 교안
학습 단원명	로봇공학 프로젝트	1. 로봇공학 프로젝트 관련 문제해결을 위 2. 자율주행 로봇을 저	한 소프트웨어 알	
작합 단천 8	인공지능의 사회적 영향 3. 인공지능에 대한 비판적 자세를 바탕으로 인공지능과 인간의 공 방안을 도출한다. 4. 트롤리 딜레마에 본인의 선택을 결정하고 의견을 주장할 수 있			
학습 목표	① 트롤리 딜레마를 이해하고 로봇, AI 윤리에 대해 본인의 의견을 말할 수 있다. - 모랄머신을 통한 도로 위 자율주행차의 다중 학습 이해 - 트롤리 딜레마에 대한 본인의 선택을 로봇을 통해 표현			
(학습 역량)	- 기초 아두이노	기초를 이해하고 아두 - 학습 (문법 및 작동 5 에 맞춰 센서값 인식 및	방법 학습)	
교육과정 연계	[12로봇03-03] 로봇공학 프로젝트 수행을 위하여 로봇 제어의 원리를 이해하고, 관련 IR. RGB, 3색LED, 부저를 사용하는 자율 문제해결을 위한 소프트웨어 알고리즘을 구행 로봇으로 직접 주행 미션 수행 구상한다. [12인기03-03] 인공지능에 대한 비판적 자세를 바탕으로 인공지능과 인간의 공존 방안을 도출한다.			
정보기기 활용 실습 및 체험 활동 요소	- 자율주행차 로봇의 제어(코드입력) 하며 로봇 프로젝트 수행 - 개인의 선택을 통해 학습되는 인공지능 윤리 이해 - 최종 주행 맵을 통과하며 로봇, AI 프로젝트 수행			
자기주도 학습활동		에 따른 각자의 선택을 F하기 위한 센서값 조절		

동기유발 - 현실적인 문제해결과 경쟁 요소를 추가하여 학습 동기 확보 전략 및 - 자율주행차 로봇을 직접 제작하고 본인이 스스로 윤리의식에 따른 의사결정 수행 흥미 차시 주요 활동(수업) 내용 - 자율주행차 로봇 이해하기 - 모랄머신과 인문학, 사회학에 따른 인공지능 이해 1~4 커리큘럼 - 기초 아두이노 문법 이해 주요 활동 - 트롤리 딜레마 이해하기 - 자율주행차 제어 방법 학습 5~8 - 아두이노 IR, RGB, 3색 LED 사용하기 - 주행 맵의 교차로에 따른 선택과 이유 발표 (윤리적 선택 소개)

트롤리 딜레마

모랄머신과 AI, 로봇 윤리의식 재고



주행 맵 위 트로리 딜레마(주행 선택)

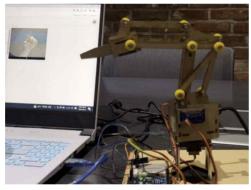
학생 스스로 트롤리 딜레마 선택(과제)

함수처럼 로봇도 입력과 출력이 존재한다!

로봇 프로젝트용 자율주행차 로봇

프로젝트 수행 아두이노 교육

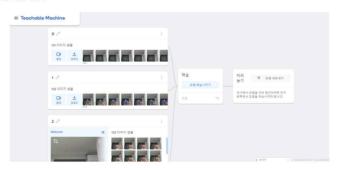
□ (주제②) 인공지능과 데이터 프로그램 교안

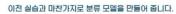

(수준) 과정명	(심화) 책상 위의 비서 딥러닝 로봇팔		교육유형/시간	지속 과정 / 총 12차시 (4회) (이론 2차시, 실습 10차시) ※ 3시간 × 4회(일)	
수강 가능 교육생 수준		유한 청소년 및 공학 리 청소년	수업방법	IC-PBL(과제, 문제해결)	
교육과정 연계 과목		나는 인공지능 수업 과, 정보)	교육장소	방문형 및 집합형 모두 수행	
온라인 과정 여부		Х	적정 클래스 인원	약 20명	
학습자료		딥러닝 로봇팔	키트, 노트북, 수업	교안	
학습 단원명	로봇공학 프로젝트	 1. 제작한 로봇을 시연 및 공유하며 로봇의 활용 분야를 제안하여 로 대한 긍정적 사고와 문제해결에 대한 자신감을 갖는다. 2. 로봇팔을 직접 제작하고 제어하며 미션에 따른 수행 모션을 제한다. 			
	인공지능	3. 인공지능 시스템으로 해결 가능한 문제를 발견하고, 문제해결에 적합한 인공지능 시스템을 적용한다.4. 티처블머신을 활용한 딥러닝 모델을 생성하고 로봇팔에 적용한다.			
학습 목표	① AI 로봇팔에 대한 이해와 응용 능력 갖추기 - 로봇팔의 움직임과 작동을 제어하는 프로그래밍 능력 습득 - 아두이노를 활용하여 로봇팔 제어 및 시뮬레이션 구현				
(학습 역량)	② 인공지능과 로봇 제어의 상호작용 이해 및 적용하기 - 인공지능과 머신러닝의 개념과 원리를 이해하고 적용하는 능력 함양 - 머신러닝 모델을 활용하여 예측과 문제해결에 응용하는 능력 발전				
교육과정	[12로봇03-06] 제작한 로봇을 시연 및 공유 하며 로봇의 활용 분야를 제안하여 로봇에 로봇팔을 직접 제작하고 기구학적으로 대한 긍정적 사고와 문제해결에 대한 자신감을 해석하여 원하는 위치로 제어할 수 있다. 갖는다.				
연계	[9정04-04] 인공지능 시스템으로 해결 가능한 문제를 발견하고, 문제해결에 적합한 인공 지능 시스템을 적용한다.				
정보기기 활용 실습 및 체험 활동 요소	- 1인 1대의 컴퓨터 실습 (코딩) - 딥러닝 로봇 팔 키트를 활용한 메이킹 활동 - 빔프로젝터, 스크린을 활용한 활동 장소 구성				
자기주도 학습활동	- 로봇 팔을 활용	회로 구성을 이해하기 용하여 자유로운 프로젝 한 코드 수정 및 AI 로	트 구현		

동기유발 전략 및 흥미

- 메이킹과 SW 교육을 함께 진행하여 학생의 집중도와 창의력 향상
- 학습한 내용을 바탕으로 기구학 로봇팔 해석 프로젝트 수행 (과제) 최종 프로젝트 완성 후 발표 및 시연

	차시	주요 활동(수업) 내용
	1~3	- AI 로봇팔 이해와 구성 - 인공지능과 머신러닝 기초 이론 학습
커리큘럼 주요 활동	4~6	- 로봇팔 조립 및 회로 구성 - 로봇팔 기초 제어(아두이노)
	7~9	- 아두이노 심화(로봇팔 제어 중심) - 개인별 프로젝트 수행(스켈레톤 코드 제공)
	10~12	- 인공지능과 로봇팔의 상호작용 - AI 로봇팔을 활용한 프로젝트 완성 및 시연





딥러닝 로봇팔 비서 학습 모션

로봇팔 키트 세트 구성

교육 이미지

티처블 머신을 활용한 디러닝 학습 모델 제작

AI 교육

□ (주제①-3) 컴퓨팅 사고력 프로그램 교안

(수준) 과정명	(심화) 파이썬 X	로봇 프로젝트	교육유형/시간	단기과정 / 총 8차시 (2회) (이론 2차시, 실습 6차시) ※ 4시간 × 2회(일)	
수강 가능 교육생 수준	텍스트 코딩이 가능한 학생 (초등 고학년 이상)		수업방법	PBL(프로젝트기반학습)	
교육과정 연계 과목	정보, [학교에서 만나는		교육장소	방문형 및 집합형 모두 가능	
온라인 과정 여부	X (보충학습용	동영상 제공)	적정 클래스 인원	약 20명	
학습자료		노트북, 휴머노	이드(excalibur), 핑	퐁로봇	
학습 단원명	만나는 인공지능 (즉 창의 융합적 (즉	만나는 인공지능 (활동 2) Chat GPT를 활용해 어떻게 코딩을 할 수 있을까?			
학습 목표 (학습 역량)	- (컴퓨팅 사고력) - (의사소통, 협업등 ② 우리 주변에 있는	파이썬 코딩으로 논 등력) 미션을 수행하 : 문제 상황을 이해	·리적 사고를 키울 기 위해 협업하는 하고 로봇을 이용 히	방식을 이해할 수 있다. 수 있다. 방식을 이해할 수 있다. 나여 문제를 해결할 수 있다 - 있는 문제를 스스로 찾아볼	
교육과정 연계	[6실05-07] 로봇에 사용되는 센서와 인체 구조를 비교하여 이해하고 센서를 장착한 로봇을 제작하여 구동시켜봄으로써 로봇의 작동 원리를 강조한다. [6실04-09] 프로그래밍 도구를 사용하여 기초적인 프로그래밍 과정을 체험한다. [12정보04-11] 텍스트 기반 프로그래밍 언어의 개발 환경 및 특성을 이해한다.				
정보기기 활용 실습 및 체험 활동 요소		머노이드 모션 동작을 파이썬 코드로 구현하여 원하는 미션 수행 듈형 로봇큐브로 미션 창작활동			
자기주도 학습활동		인공지능 알고리즘을 로봇에 적용하는 다양한 방법의 코딩을 수행 로봇과 센서를 활용하여 스스로 해결할 수 있는 시나리오 기반 코딩 수행			
동기유발 전략 및 흥미	방법에 대한 새로	2개의 각기 다른 형태와 기능의 로봇을 비교해가면서 파이썬으로 로봇을 제어하는 방법에 대한 새로운 지식 체험 해커톤과 미니로봇 대회를 통해 성취의욕 고취			
	차시 주요 활동(수업) 내용				
	1~2차시 (도입)	- 파이썬이 무엇인 - 파이썬 설치하고	–	산자 이해하기	
커리큘럼 주요 활동	3~4차시 (확장)	- 파이썬 자료형 (- 파이썬 제어문(3		7	
	5~6차시 (심화)	- 로봇 큐브와 휴다 - 파이썬으로 로봇		 하기	
	7~8차시 (응용)	- 미니로봇대회 -	미션 수행하기		

○ (컴퓨팅 사고력 심화) 파이썬 X 로봇

교구명	휴머노이드 Line core m	핑퐁로봇
주요 특징	- 18개 서보모터로 자연스러운 동작 - 댄스, 격투, 축구 등 다양한 미션 - 100여가지 모션 탑재	- 큐브 하나로 확장 가능한 구조 - 블루투스 연결 - 앱 코딩, 블록 코딩, 파이썬 코딩 지원
사진		
교구재 필요 이유	- 파이썬의 기본 문법을 배운 후에 실제 로봇에 적용하는 실습 - 모션 동작을 파이썬 코드로 구현하여 원하는 미션 수행	- 파이썬으로 로봇의 모터뿐만 아니라 센서와 연동한 실습 - 라이브러리와 모듈을 사용하여 블록 코딩에서 텍스트 코딩으로 심화 학습
타 교육과의 호환성	- 인공지능 모델을 학습한 후에 로봇에 적용하는 수업과 연계(사전 학습 성격)	- 프로젝트, 해커톤, 로봇대회 등에 활용 가능

□ (주제③-1) 융합형 문제해결 프로그램 교안

(수준) 과정명	(기초) 인공지능 로	봇 서비스 만들기	교육유형/시간	지속 과정 / 총 12차시 (4회) (이론 2차시, 실습 10차시) ※ 3시간 × 4회(일)	
수강 가능 교육생 수준	SW·AI 학습 경험이 없는 학생 또는 초등학교 3학년 이상		수업방법	PBL(프로젝트기반학습)	
교육과정 연계 과목	과학, [학교에서 만나는		교육장소	방문형 및 집합형 모두 가능	
온라인 과정 여부	X (보충학습용	동영상 제공)	적정 클래스 인원	약 20명	
학습자료		지니봇,	AI카메라, 노트북		
학습 단원명	만나는 인공지능 (즉 로봇으로 배우는 (즉	활동 1) 인공지능이(활동 2) 인공지능을 활동 3) 내가 생각힌 활동 4) 머신러닝 모	활용한 서비스는 로봇을 어떻게 [만들 수 있을까?	
학습 목표 (학습 역량)	- (컴퓨팅 사고력) - (의사소통, 협업 토론하고 팀을 -	순차, 선택, 반복 개 능력) 친구들과 같이 구성하여 함께 만들어	념을 학습하고 인 인공지능의 사력 거 간다.	있는 것을 찾아낼 수 있다. 공지능의 원리를 이해한다. 와 적용 방법에 대해	
	•			하여 문제를 해결할 수 있다 수 있는 문제를 스스로 찾아볼	
	-	열하는 프로그램을 만드는 등의 구조를 이해한다.	과정 센서와 인공자 해결하기	능 기능을 결합하여 주어진 문제	
교육과정 연계	[6실04-09] 프로그래밍 래밍 과정을 체험한다.	도구를 사용하여 기초적인 포	프로그 코딩 프로그 해결하기	램과 친해지기 및 간단한 미션	
	[69정03-08] 실생활의 문제를 탐색하여 발견하고, 프로 로봇코딩으로 다양한 미션을 스스로로 로그래밍을 통해 해결한다.			로 다양한 미션을 스스로	
정보기기 활용 실습 및 체험 활동 요소	- 로봇과 AI카메라를 활용하여 음성인식, 얼굴인식 등 인공지능 서비스를 체험 - 스크래치 AI 코딩으로 블록 코딩 학습				
자기주도 학습활동	- 코딩 카드, 스크래치 등 다양한 방법의 인공지능 로봇 코딩을 수행 - 다양한 센서를 활용하여 스스로 해결할 수 있는 시나리오 기반 코딩 수행				
동기유발 전략 및 흥미	- 인공지능 번역, 감정인식, 맞춤형 서비스, 얼굴인식, 데이터활용 등 인공지능 프로젝트 수업 - 가볍고 선연결 없이 설치가 간단한 구조로 빠르게 시작하고 결과 확인				
	차시	주요 활동(수업) 내용			
	1~3차시 (도입) - 지니봇 기본 사용법 알아보기 (AI 카메라 연결) - 음성인식 활용 프로그램 만들기			카메라 연결)	
커리큘럼 주요 활동	4~6차시 (확장)	- 감정인식 활용 <u>-</u> - 얼굴인식 활용 <u>-</u>			
	7~9차시 (심화)	- 머신러닝 모델을 - 머신러닝 모델을			
	10~12차시 (응용)	- 나만의 인공지능 - 친구들과 소통히		기	

○ (융합형 문제해결 기초) 인공지능 로봇 서비스 만들기

교구명	지니봇 (지니캠)
주요 특징	- 언플러그드 카드코딩(OID)부터 스크래치, 앱, 파이썬 코딩까지 가능 - 카메라 활용 인공지능 구현 - 블루투스, 3축 가속도 센서
사진	THE O
교구재 필요 이유	- 인공지능 번역, 감정인식, 맞춤형 서비스, 얼굴인식, 데이터활용 등 인공지능 프로젝트 수업 가능한 교육과정 제공 - 가볍고 선연결 없이 설치가 간단한 구조
타 교육과의 호환성	- 피지컬 컴퓨팅, IoT 실습과 연계 - 블록 코딩 수업과 연계

□ (주제③-4) 융합형 문제해결 프로그램 교안

(수준) 과정명	(심화) SDGs 문제해결 A 프로젝트	l로봇	교육유형/시간	지속 과정 / 총 12차시 (4회) (실습 1~9차시, 해커톤 10~12차시) ※ 3시간 × 4회(일)	
수강 가능 교육생 수준	SW·AI 학습 경험이 없는 학생 (중, 고등학생 추천)		수업방법	디자인씽킹 활용 문제해결	
교육과정 연계 과목	정보교과, 인공지능		교육장소	방문형, 집합형 가능	
온라인 과정 여부	X (보충학습용 동영상 지	데공)	적정 클래스 인원	약 20명	
학습자료	교재, 노트	트북, 핑퐁료	로봇 교구, 핑퐁 스	크래치 SW	
학습 단원명	우리 주변에서 (활동 3) 인	속 가능한 공지능으로	미래사회 상상해! 해결할 수 있는	문제를 찾아볼까?	
학습 목표 (학습 역량)	만나는 인공지능 (활동 4) 지속가능한 사회를 만드는 인공지능 로봇을 만들어보자 ① 문제 해결에 필요한 머신러닝을 종류를 선택하고, 그 이유에 대해 설명할 수 있다. - (컴퓨팅 사고력) 블록 코딩을 통해 논리적 사고와 문제해결력을 증진할 수 있다. - (의사소통, 협업 능력) 프로젝트의 목표와 진행 상황을 명확하게 전달할 수 있다. ② 지속 가능한 사회를 만들기 위해 인공지능을 이용하여 문제를 해결할 수 있다 - (컴퓨팅 사고력) 로봇과 블록 코딩을 활용하여 논리적, 비판적 사고를 증진함 - (의사소통, 협업 능력) 조별로 자신의 역할을 인식하고, 공동의 문제해결에 일조함				
교육과정 연계	[12인기04-03] 인공지능 프로젝트를 수행하는 과정에 서 협력적인 문제 해결 자세를 바탕으로 인공지능 소 프트웨어를 개발한다. [9정01-03] 문제 해결 목적에 맞는 피지컬 컴퓨팅 구성 요소를 선택하여 시스템을 구상한다. [9정01-02] 피지컬 컴퓨팅의 개념을 이해하고, 생활 속에서 적용된 사례 조사를 통해 컴퓨팅 시스템의 필요성과 가치를 판단한다.				
정보기기 활용 실습 및 체험 활동 요소	- 핑퐁스크래치를 활용한 로보틱스 제어 코딩 활동 : 노트북 활용 - 머신러닝 기술을 활용한 인공지능 로봇코딩 활동 : 웹캠 또는 AI무선카메라 활용 - IoT 센서와 블럭, 각종 생활소품을 활용한 메이커 활동 : 센서킷 4종 등				
자기주도 학습활동	- 학생들이 스스로 SDGs에 관련한 주제를 선택하고, 정보를 수집하여 적용 - 학생들이 원하는 목표를 설정하고, 그것을 달성하기 위한 방법을 스스로 찾아내는 자기주도학습 능력 향상				
동기유발 전략 및 흥미	- 자신의 로봇을 디자인하고 프로그래밍하는 과정에서 창의성과 상상력을 증진 - 학생들이 자신의 아이디어를 구현해보면서 자신감과 즐거움을 느끼게 되면서 미래 진로에 대한 탐색의 기회로 자연스럽게 연결				
	차시		주요 활동(수	업) 내용	
	1~3자시		회 알아보기 및 로봇코딩 입문		
커리큘럼	4~6차시 - 블록코	크딩 기초 닭	및 센서를 활용한	로봇코딩 실습	
주요 활동	7~9차시 - 머신리	서닝을 이용	한 인공지능 로봇	·코딩 실습	
	10~12자시	- 주제 선정 하드웨어 및 소프트웨어 설계			

○ (융합형 문제해결 심화) SDGs 문제해결 AI로봇 프로젝트

교구명	핑퐁로봇, 확장블록, 카메라, 외부 센서 등
주요 특징	- 큐브 하나로 확장 가능한 구조 - 블루투스 연결 - 앱 코딩, 블록 코딩, 파이썬 코딩 지원
사진	
교구재 필요 이유	- 파이썬 코딩 - 센서, 스탭모터, 음성인식(TTS) 기능 활용 로봇 제어 실습 - 하드웨어 설계, 제작과 팀프로젝트 수행
타 교육과의 호환성	- 피지컬 컴퓨팅, IoT 실습과 연계 - 해커톤, 지능형 로봇 창작 팀프로젝트

